
AFRL-AFOSR-VA-TR-2016-0118

THE VALUE OF INFORMATION IN DISTRIBUTED DECISION NETWORKS

Munther Dahleh
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Final Report
03/04/2016

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTA2
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 



INSTRUCTIONS FOR COMPLETING SF 298 

1. REPORT DATE.  Full publication date, including 
day, month, if available. Must cite at least the year 
and be Year 2000 compliant, e.g. 30-06-1998; 
xx-06-1998; xx-xx-1998. 

2. REPORT TYPE.  State the type of report, such as 
final, technical, interim, memorandum, master's 
thesis, progress, quarterly, research, special, group 
study, etc. 

3. DATES COVERED.  Indicate the time during 
which the work was performed and the report was 
written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; 
May - Nov 1998; Nov 1998. 

4. TITLE.  Enter title and subtitle with volume 
number and part number, if applicable. On classified 
documents, enter the title classification in 
parentheses. 

5a. CONTRACT NUMBER.  Enter all contract 
numbers as they appear in the report, e.g. 
F33615-86-C-5169. 

5b. GRANT NUMBER.  Enter all grant numbers as 
they appear in the report, e.g. AFOSR-82-1234. 

5c. PROGRAM ELEMENT NUMBER.  Enter all 
program element numbers as they appear in the 
report, e.g. 61101A. 

5d. PROJECT NUMBER.  Enter all project numbers 
as they appear in the report, e.g. 1F665702D1257; 
ILIR. 

5e. TASK NUMBER.  Enter all task numbers as they 
appear in the report, e.g. 05; RF0330201; T4112. 

5f. WORK UNIT NUMBER.  Enter all work unit 
numbers as they appear in the report, e.g. 001; 
AFAPL30480105. 

6. AUTHOR(S).  Enter name(s) of person(s) 
responsible for writing the report, performing the 
research, or credited with the content of the report. 
The form of entry is the last name, first name, middle 
initial, and additional qualifiers separated by commas, 
e.g. Smith, Richard, J, Jr. 

7. PERFORMING ORGANIZATION NAME(S) AND 
ADDRESS(ES).  Self-explanatory. 

8. PERFORMING ORGANIZATION REPORT NUMBER. 
Enter all unique alphanumeric report numbers assigned 
by the performing organization, e.g. BRL-1234; 
AFWL-TR-85-4017-Vol-21-PT-2. 

9. SPONSORING/MONITORING AGENCY NAME(S) 
AND ADDRESS(ES).  Enter the name and address of the 
organization(s) financially responsible for and 
monitoring the work. 

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if 
available, e.g. BRL, ARDEC, NADC. 

11. SPONSOR/MONITOR'S REPORT NUMBER(S). 
Enter report number as assigned by the sponsoring/ 
monitoring agency, if available, e.g. BRL-TR-829; -215. 

12. DISTRIBUTION/AVAILABILITY STATEMENT.  Use 
agency-mandated availability statements to indicate the 
public availability or distribution limitations of the 
report. If additional limitations/ restrictions or special 
markings are indicated, follow agency authorization 
procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include 
copyright information. 

13. SUPPLEMENTARY NOTES.  Enter information not 
included elsewhere such as: prepared in cooperation 
with; translation of; report supersedes; old edition 
number, etc. 

14. ABSTRACT.  A brief (approximately 200 words) 
factual summary of the most significant information. 

15. SUBJECT TERMS. Key words or phrases 
identifying major concepts in the report. 

16. SECURITY CLASSIFICATION.  Enter security 
classification in accordance with security classification 
regulations, e.g. U, C, S, etc. If this form contains 
classified information, stamp classification level on the 
top and bottom of this page. 

17. LIMITATION OF ABSTRACT.  This block must be 
completed to assign a distribution limitation to the 
abstract. Enter UU (Unclassified Unlimited) or SAR 
(Same as Report). An entry in this block is necessary if 
the abstract is to be limited. 

Standard Form 298 Back (Rev. 8/98) 



The Value of Information in Distributed Decision Networks
Grant No. FA9550-11-1-0312

Munther A. Dahleh

EECS Department and
Laboratory for Information and Decision Systems, MIT

1



Research Accomplishments

Below, we describe the various accomplishment of our work under grant FA9550-11-1-0312.
We start by describing a general formulation, and then we describe the various results at-
tained.

1 Mathematical description of Distributed Decision Network un-
der Information Constraints

We now define a mathematical framework for networks. Let G = (V,E) be an undirected
random network (graph) drawn from a known distribution pG,

1 composed of a finite vertex
set V and a link set E = {V × V modulo S} where S = {{(i, j), (j, i)}}. Each vertex
i ∈ V corresponds to an agent, and each link (j, i) ∈ E corresponds to a channel by which
information flows from agent j to agent i in the network. We denote the neighborhood of i
by N (i) = {j | (i, j) ∈ E}.

There is a state (internal or external) W drawn from a distribution pW that the agents
may want to estimate, transmit, and act upon. Each agent i also possesses a state and some
private observation about W . We denote the state at time t by xi(t), and we assume that
the tuple of initial states (xi(0)) is correlated with W and are drawn randomly from a joint
distribution pWX0 . Agent i’s private information/observation at time t is denoted by Yi(t)
and has a joint distribution pWYi(t) with W . Finally, agent i has some information about
agent j’s state (either because it can observe it or agent j transmits it), which we denote by
mji(t) = mji(xj(t)).

The agents autonomously update their states according to the dynamics

xi(t+ 1) = fi
(
xi(t), {mji(t)}j∈N (i), Yi(t)

)
. (1)

The performance of the system, denoted as J ({fi}, {mji}, {pWYi}, pWX0), is governed by
the information {pWYi} and the dynamics/algorithms {fi} and {mji}, and so we can consider
optimizing the system’s performance over these parameters. To this end, we consider a class
of information types {pWYi} ∈ P over which the information can take its distribution as
well as a set of dynamics/algorithms {fi} ∈ F and messages/information {mji} ∈ M that
appropriately constrain the dynamics of the system.

2 Static Decision Networks under Communication Constraints

Below, we summarize known research and our main contributions in the static problem.

2.1 Hypothesis Testing under Capacity Constraints

One of the simplest decision systems one can consider is binary hypothesis testing, where a
decision between two hypothesis is made using observations. This fundamental problem has
application in, for example, target identification and multi-mode systems identification.

1At times, we will be interested in analyzing the performance of the network with respect to broad
properties determined by pG while at other times we will be interested in an analysis with respect to properties
of a specific graph G. In the latter case, we simply set pG to the degenerate distribution pG(G) = 1G=G.
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In this problem, the vertex set V is a single agent gathering information Y about a
random variable X through a channel of fixed capacity c. The state of the world W can
assume two discrete states w1 and w2 with a known probabilities, and the distribution of X
depends on W ; that is, X ∼ pi if W = wi where pi belongs to the n-th dimensional simplex.
The information (Y (t))t gathered is a sequence of i.i.d samples which have been filtered
through the channel pWY and whose alphabet has a size k that can be chosen arbitrarily.

In this setting, we use the traditional Shannon channel capacity parametrization of im-
perfect information. Specifically, we use sets P(c) parametrized by a capacity c, according
to P(c) = {pXY | maxpY I(X;Y ) ≤ c}. We also use the following approximation valid for
small capacities derived in [?]:

P ′(c, p0) =

{
pXY |

1

2
‖pY |X=i − p0‖2[p−1

0 ]
≤ c i = 1, . . . , n

}
,

where the capacity constraint is replaced by n quadratic inequalities and the output proba-
bility distribution lies around p0.

In this framework, the agent’s performance is naturally based on the probability of error;
that is, declaring “W = w1” when the true state of the world isW = w2 and vice versa. In our
case, rather than measure performance by the minimum number of samples required to make
a decision with a fixed probability of error (quickest detection), we focus our attention on the
rate at which the probability of error decreases as the number of samples collected increases.
In this setting, the relationship between information and detection rates (i.e., the value of
information) is a related to a function C(p1, p2, pXY ) called the Chernoff information. The
Chernoff information relates the asymptotic behavior of the estimation to the probability of
error, and for a large number of samples t, the probability of error is written in terms the
Chernoff information as

Pe(t) = e−C(p1,p2,pXY ) t.

Therefore, in our case, we can equivalently express the average performance of the system
with a channel pXY as J(pXY ) = e−C(p1,p2,pXY ) so that the optimal performance of such a
system over all possible channels is obtained by solving the optimization problem

J(c) = min
pXY ∈P(c)

J(pXY ). (2)

We can explicitly solve this problem in the small capacity regime by substituting P(c)
with P ′(c) and by using quadratic approximation for the Chernoff Information, yielding the
following theorem [?].

Theorem 1 (Value of information in hypothesis testing) For small capacities c,

J(c) = 1− ‖p1 − p2‖
2
1

4
c.

The optimizing distribution p∗XY to optimization (??) that yields Theorem ?? also allows
us to get an idea of the actionable information in this framework. LetX1 = {x|p1(x) > p2(x)}
and X2 = {x|p2(x) > p1(x)}. The optimizing channel applies opposing weights to symbols
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in X1 and X2, and it applies an arbitrary weights to symbols not in X1 ∪ X2, the so-
called inactionable information set. This is an important point for this application – a
channel optimized for estimation of X is not necessarily the channel optimized for hypothesis
estimation.

We also have the following relationship between the size of the output alphabet and the
channel capacity.

Theorem 2 (Information content and latency in hypothesis testing) Let k be the
size of the output alphabet (i.e., Y ∈ {yi}1≤i≤k) and let pkXY be the optimizing channel
for that output alphabet size. For k ≥ kmin = dece, J

(
pkXY ) = J(pkmin

XY

)
.

In other words, for a fixed capacity, optimizing over a set of channels with output alphabet
greater than dece does not improve performance. Another interesting aspect of the optimizing
channels is that because they are tuned to hypothesis testing rather than estimation of X,
decoding information through the channel is simple.

2.2 The Impact of the Network Topology on Distributed Hypothesis Testing

We now move to a type of distributed hypothesis testing where the agents seek to guess the
state of the world W through individual trials. However, rather than study how the error
rate diminishes as an agent accumulates unbounded information, we study how information
flow through the networks impacts the error rate over an unbounded chain of agents. Ul-
timately, we are interesting in determining if the network eventually “guesses” the correct
state of the world, in which case we say that the network “learned.” Interestingly, learning
is not guaranteed in this setting. As we will see, the decision network’s topology can have
unintended effects on how errors propagate through the network.

To illustrate the theoretical issues arising in this context, let us consider a learning
problem over a social network of rational agents. The problem is whether agents would be
able to extract valuable information about an unobservable parameter, simply by observing
the behavior of their neighbors. In other words, we are interested in understanding which
network structures would lead to learning the unknown parameter and which networks can
generate a herd behavior, where in the Perfect Bayesian Nash Equilibrium, agents can only
extract limited amount of information from their neighbors’ actions.

As before, let W denote an underlying state of the world, unknown to the agents, and
suppose for simplicity that W takes two values WL and WH > WL, and suppose that each
individual receives an imperfectly informative signal about the value of W (also referred
to as his private belief ), denoted by Y , which is identical and independently distributed
across individuals. It is common knowledge that the signal has a conditional distribution
p(Y |W ) in states W = WH and W = WL. We assume that the distributions p(Y |WH) and
p(Y |WL) are absolutely continuous with respect to one another and have a common support
[σ̃, σ̄] ⊆ [[0, 1]. We say that the private beliefs are bounded if 0 < σ̃ < σ̄ < 1; and unbounded
if [σ̃, σ̄] = [0, 1]. For unbounded beliefs, signals in favor of state WL are more likely to occur
in state WL than in state WH , i.e., there is an underlying tendency for the truth to be
revealed in the signals.
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A realistic framework of learning in a multi-agent system must model structure of social
networks with which individuals observe and communicate with each other.2 Thus, we as-
sume that individuals form a social network in which each agent can observe the actions of
(a subset of) other individuals that have moved in the past. After observing their private
signal (Yi) and other available information about the actions of other individuals, each indi-
vidual makes a decision. Beliefs are formed in a Bayesian manner based on the content of
the private signal and the knowledge of what all precedents have done (i.e., actions of people
who have moved before).

We are interested in understanding what agents can learn from one another in the long
run, when they update their beliefs in a Bayesian fashion. To this end, we develop a theory of
learning and dynamic belief formation when individuals observe not the entire action history,
but rather the actions of a neighborhood of individuals. Notice that both the analysis and the
equilibrium outcome are significantly different if individuals do not observe all past actions,
but only a subset of these past actions, that may be for example randomly chosen from the
entire set of past actions. One difficulty with this class of models is that to determine how
beliefs will evolve, we need to characterize the perfect Bayesian Nash equilibrium, which
involves rather complex inferences by individuals.

In recent work [?], we have developed a new framework for learning dynamics over a
very general (deterministic or stochastic) social network of agents (see also related work [?]
and [?]). In particular, we consider a countably infinite number of agents, each of which is
making a decision xn sequentially. We assume that the neighborhood of agent n, B(n), is
stochastically generated according to an arbitrary probability distribution pnG over the set of
all subsets of {1, . . . , n−1}. The sequence {pnG} is the network topology of the social network
formed by the agents. The network topology is common knowledge, whereas the realized
neighborhood B(n) is the private information of agent n. Notice that in the case that B(n)
is a strict subset of {1, . . . , n − 1} for some n ≥ 2, then the social beliefs do not form a
martingale, and as a result, one cannot apply Doob’s martingale convergence theorem in the
analysis.

We provide a systematic characterization of the conditions under which there will be
equilibrium information aggregation in social networks. We say that there is information
aggregation or equivalently asymptotic learning, when, in the limit as the size of the social
network becomes arbitrarily large, individual actions converge (in probability) to the ac-
tion that yields the higher payoff. The key property of the network topology relevant to
asymptotic learning turns out to be the expanding observations property.

To describe this concept, let us first introduce another notion: a finite group of agents
is excessively influential if there exists an infinite number of agents who, with probability
uniformly bounded away from 0, observe only the actions of a subset of this group. For
example, a group is excessively influential if it is the source of all information (except in-
dividual signals) for an infinitely large component of the social network. If there exists an

2Although there is a large literature in economics on social learning (see [?], [?], [?]), this literature
does not focus on the implications of the social network topology and interaction structure on information
dissemination and belief formation. Most of the work relies on the assumption of perfect observability of
the ordered history. Under this (implausible) assumption, the posterior beliefs form a martingale, which
significantly simplifies the analysis, as one can simply apply Doob’s martingale convergence theorem.
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excessively influential group of individuals, then the social network has nonexpanding ob-
servations, and conversely, if there exists no excessively influential group, the network has
expanding observations. This definition implies that most reasonable social networks have
expanding observations, and in particular, a minimum amount of “arrival of new informa-
tion” in the social network is sufficient for the expanding observations property. For example,
the environment studied in most of the previous work in this area, where all past actions are
observed, has expanding observations. Similarly, a social network in which each individual
observes one uniformly drawn individual from those who have taken decisions in the past or
a network in which each individual observes his immediate neighbor all feature expanding
observations. Note also that a social network with expanding observations need not be con-
nected. A simple, but typical, example of a network with nonexpanding observations is the
one in which all future individuals only observe the actions of the first K <∞ agents.

We establish the following result for the perfect Bayesian Nash Equilibrium of the learning
game:

Theorem 3 (Impact of network topology on learning) If the network topology is non-
expanding, then there will not be asymptotic learning. Conversely, if private beliefs are un-
bounded and the network topology is expanding, then there will be asymptotic learning.

This is a striking result (particularly if we consider unbounded beliefs to be a better
approximation to reality than bounded beliefs), since, as explained above, almost all reason-
able social networks have the expanding observations property. This theorem, for example,
implies that when some individuals, such as “informational leaders,” are overrepresented in
the neighborhoods of future agents (and are thus “influential,” though not excessively so),
learning may slow down, but asymptotic learning will still obtain as long as private beliefs
are unbounded.

2.3 Value of Information in Shortest Path and Network Flow Optimizations

We now address the performance of decision networks by considering the limitations of one
agent who makes a single decision under uncertainty [?]. The framework corresponds to,
for example, a central decision maker who obtains information from either one or many
imperfect distributed sensors, and, hence, has immediate applications in strategic planning
under uncertainty. A natural question that arises in this setting is how information quantity
(as determined by the quality or number and/or sensors) impacts decision quality.

In this framework of a single decision, we measure the performance of the agent’s decision,
given by its state x(1) at time t = 1 (x(0) will be irrelevant). X is the set of decisions available
to the agent so that x(1) ∈ X, and l(x,W ) is the cost (performance) of a decision x ∈ X
where the additional argument W (the state of the world) acts as a random perturbation of
the decision’s quality. The agent’s private information Y about W dictates the action. The
measure of performance for information governed by the distribution pWY is

J(pWY ) = E

[
min
x(1)∈X

E [l(x(1),W )|Y ]

]
.
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We continue the general setting stated previously in a performance-centric problem of
high importance: shortest path optimization on a graph. In this problem, the decision set
X is the set of possible paths in a directed acyclic graph G = (V,E) with vertices V and
edges E, and each edge e ∈ E has a random edge weight We.

Despite the computation of J(pWY ) being NP-Hard, we can leverage the geometric
properties of the shortest-path polytope X of G and the properties of P(c) to obtain
fundamental performance bounds as well as simple characterizations of the actionable in-
formation [?]. First, rather than applying a traditional Shannon channel capacity pa-
rameterization of imperfect information, we adopt a different representation. Specifically,
we use sets P(c) parameterized by a scalar c, which we still term capacity, according to
P(c) = {pWY | V AR [E[W |Y ]] ≤ c}. The optimizing distribution p∗WY ∈ P(c) as well as the
best achievable performance from a c-amount of information is determined by the solution
to

J(c) = min
pWY ∈P(c)

J(pWY ). (3)

Using this definition for information allows us to quantify the value of information ac-
cording to the following theorem [?].

Theorem 4 (Value of information) A lower bound for shortest path optimization perfor-
mance under capacity c is

J(c) ≥ J(0)− d

2

√
c,

where d is the diameter of X. The bound is “sharp” if E[W ] = 0 and C ≤ V AR[We] for all
e ∈ E.

In short, the fastest rate of improvement for shortest path optimization is the square
root of the capacity c 3. We can further leverage the geometry of X to characterize the set
actionable information that should be communicated to the agent.

Theorem 5 (Actionable information) The actionable component of the information vec-
tor Ŵ is that which lies in the smallest subspace containing X.

The theorem tell us information contained in this subspace is all that is needed to choose
the optimal path. The orthogonal component only improves estimation power, which is
irrelevant to the agent’s objective. In fact, as long as the variance of the estimate in the
actionable subspace is c, the estimate itself can be arbitrarily bad, and the agent can still
achieve the same performance.

In [?], it is shown that a practical scheme for concentrating the information vector to its
actionable component is to simply compare two paths of the graph. In the Gaussian case,
this choice provably provides good performance.

3We can extend the same bound to any linear, combinatorial problem like shortest path optimization,
and, further, so long as the original combinatorial problem can be solved in polynomial time, the lower
bound can be computed in polynomial time (since d must be computed). The bound also holds for affine
costs of the form l(x,W ) = g(x) + xTW .
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Theorem 6 If we restrict pWY ∈ P ′(c) where

P ′(c) = P(c)
⋂
{pWY |W and Y are jointly Gaussian},

then

J(0)− d

2

√
2

π

√
c ≤ J(c) ≤ J(0)−

√
1

2π

√
c

where the optimizing p∗WY ∈ P ′(c) places all sensors along two paths of the graph.

This performance-centric, information-energy setting can further be extended to a quasi-
dynamic setting where information is gradually revealed to the agents. If information is
randomly broadcast to the agent over time with no consideration to the agent’s past decision,
one can show that J(c) ≥ J(0) − d

2

√
c−∆ where ∆ is related to the co-variance of the

information and how the dimensionality of X is reduced as decisions are made (which impacts
how information energy must be concentrated). It can also be shown that the fundamental
limit can be improved if future information accounts for the agent’s past decisions.

We can immediately generalize the single-agent shortest path problem to multi-agent
network flow optimization. In this problem, we have R agents who seek to traverse a graph
along paths of minimal length. However, the length of each edge is determined by both a
random length W as well as congestion due to multiple agents trying to access the edge
simultaneously.

Formally, we extend the decision set to XR, where X is the set of paths in the graph,
and XR is the set of paths that each of the possible R agents can take. A natural definition
for the performance of the distributed system is the cumulative length taken by all agents
through the graph, denoted l(XR,W ).

As in the shortest path case, determining the value of information is computationally
hard, but we can derive a fundamental bound for the value of information by leveraging
geometric properties of X̃. This bound is given by the following theorem [?].

Theorem 7 (Value of information in network flow optimization) A lower bound for
network flow optimization among cooperative, distributed agents under capacity c is J(c) ≥
J(0)−O(c).

Simulations verify that performance can improve linearly in the case of i.i.d. Gaussian
edge weights and c ≤ V AR[We]. Now, unlike shortest path optimization, the set of actionable
information is no longer the subspace containing X because the relative number of agents to
the variances of the individual edges impacts performance 4. However, it is possible to show
that performance does improve at the rate

√
c if information is concentrated to at most two

paths, consistent with shortest path optimization.

3 Dynamic Decision Networks under Communication Constraints

We now consider a dynamic setting where stability and robustness must be considered in
addition to performance. We will see that graph topology, information rate, and the rate at
which agents respond to information can all significantly influence these important factors.

4This is due, in part, to the fact that the l(XR,W ) is a quadratic function, not a linear function as in
shortest path optimization
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3.1 Stability of Capacity-Constrained Computation Network

Let us assume that an efficient distributed iterative algorithm exists for the computation of a
certain function on a network whose links are assumed to support the noiseless transmission of
real-valued messages. Important examples include iterative distributed averaging algorithms,
as well as belief propagation algorithms for the computation of marginal distributions in
graphical models. When dealing with the finite-capacity, and possibly noisy, communication
link setting outlined in the previous section, a natural approach consists in trying to adapt
such algorithms in order to cope with imperfect information transmission on the channels.
Provided that the original iterative algorithm can be seen as a contraction in some metric
space, it is not hard to see that the addition of bounded noise in each iteration would result in
the accumulation of some bounded noise, whose magnitude can be controlled by controlling
the magnitude of the noise introduced in each iteration.

However, typically distributed algorithms are not contractions globally, but rather ex-
hibit some marginally stable, or unstable subspaces. As an example, typical iterative dis-
tributed averaging algorithms can be represented as multiplication by some irreducible dou-
bly stochastic matrix P . Such matrices have a one-dimensional marginally stable eigenspace
generated by the all-1 vector, and are contractions when restricted as operators to the orthog-
onal subspace to such eigenspace. When the noisy channel transmission allows for perfect
feedback, whereby every node has knowledge of the corrupted message that its neighbors re-
ceive from itself (a particular case of this is quantized transmission), then it can compensate
for the noise by subtracting it from its current state. Formally, if xi(t) is agent i’s state at
time t, and mij(t) is j’s estimate of xi(t), then each node simultaneously updates its state
as

xi(t+ 1) =
∑
j

Pijmij(t)−
∑
j

Pji(mji(t)− xi(t)) .

This update rule is such that the average of the states n−1
∑

i xi(t) is preserved, so that noise
acts only on the subspace orthogonal to the all-1 vector, where the algorithms is contractive.
Indeed, one has the following result [?].

Theorem 8 (Effect of information concentration on stability) Let ρ be the essential
spectral radius of P , i.e. the second largest modulus of eigenvalues. Assume that E[(xi(t)−
mij(t))

2] ≤ α2 for all i, j and t ≥ 0. Let x = n−1
∑

j xj(0). Then

lim sup
t→+∞

∑
i

E
[
(xi(t)− x)2

]
≤ α2

1− ρ2

3.2 Stability and Performance of Capacity-Constrained Feedback Control

One of the most powerful results capturing performance trade-offs in a stable feedback system
is the Bode integral formula [?]. In this classical result, it can be shown that for any strictly

proper LTI plant P with unstable poles {λi}i, the transfer function S(z) = e(z)
d(z)

between the

disturbance d and the input e to P (also known as the sensitivity function), must satisfy the
constraint:

1

2π

∫ π

−π
[log |S(ejω)|]−dω +

1

2π

∫ π

−π
[log |S(ejω)|]+dω =

∑
max{0, log(|λi|)} (4)

8



where [log |S(ejω)|]− = min{0, log |S(ejω)|} and [log |S(ejω)|]+ = max{0, log |S(ejω)|}.
The constraint implies that the sensitivity cannot be small at all frequencies, i.e., a

reduction in
∫ π
−π[log |S(ejω)|]−dω is achieved at the expense of increasing

∫ π
−π[log |S(ejω)|]+dω.

A natural question in this setting is: Under what conditions can we break the Bode
Integral Formula or must it always hold? We addressed this question in [?] by analyzing the
information dynamics of a feedback system using an entropy-flow analysis. First, we take a
information-theoretic view of the disturbance d and controller signal e as corrupted messages
from K and P and analyze how restrictions on {K,P} ∈ F defined by a set F of allowable
systems impacts the information content of these messages.

Specifically, let d(t) = W (t) be a dynamic state-of-the-world acting as a disturbance on
P , and let e = d−mKP . Further define

M = {{mPK ,mKP}|mPK is a linear function of P ’s internal state}
Fc = {{K,P}|K is causal and P is linear, controllable}.

We represent causality in the entropy-flow analysis by the flow constraint

I (d(t); (Ptu, P0x)|Pt−1d) = 0 ∀t ≥ 0

where Pt is the projection operator defined as Pta = (a(0), . . . , a(t), 0, . . .) for any signal
a = (a(t))t. Essentially, the constraint implies that the controller provides no information
about future signals given the past.

The assumption of causality immediately yields an interesting performance limitation:
the entropy of the input e into P cannot be decreased below the external entropy injected
into the system, formalized by the following theorem.

Theorem 9 For any {K,P} ∈ Fc and {mPK ,mKP} ∈ M, h(e(t)) ≥ h(d(t)) + I(x(0);Pte)
for all t ≥ 0.

This limitation is independent of stability and the function of K (linear, non-linear,
finite alphabet, etc...). It is also the basis for other performance limitations yielded through
applying additional assumptions K. In particular, define

Fcs = {{K,P}|K is causual, stabilizing and P is linear, controllable}.

We can represent stability in the entropy flow framework as a constraint on the variance of
the state:

sup
t
E
[
xT (t)x(t)

]
≤ ∞.

Also assume that d and e are asymptotically stationary stochastic signals (the weakest as-
sumption under which they have power spectral densities). Let F̂d and F̂e be the respective

power spectral densities of d and e, and define S(ω) =

√
F̂e(ω)/F̂d(ω), a direct generalization

of the sensitivity function to a stochastic setting. Under these mild assumptions, we get the
following theorem.

Theorem 10 (Fundamental limit of causal feedback) For any {K,P} ∈ Fcs
and {mPK ,mKP} ∈ M, the Bode Integral Formula holds.

9



Figure 1: Shannon-Bode Tradeoffs: White Area Depends on Information Rate

The most interesting aspect of this theorem is that the form of K (linear, non-linear,
lookup table, finite alphabet output, etc...) is irrelevant, and thus it yields a fundamental
limit for any feedback system. The information theoretic analysis used to re-derive these
limitations allowed us to derive performance limitations that cannot be addressed using
traditional analysis techniques [?].

Theorem 11 (Generalized Bode Integral) If {K,P} ∈ Fcs and if M is constrained so
that mPK passes through a noisy digital memoryless channel with capacity c, then

1

2π

∫ π

−π
[log |S(ejω)|]−dω ≥

∑
max{0, log(|λi|)− c}. (5)

The bound is tight for certain Gaussian channels. By means of an argument similar
to the water-bed effect, the inequality (??) asserts a limitation on the maximum allowable
disturbance rejection over any given bandwidth ∆ω in terms of the unstable modes of P
and the information rate c. If the information rate is unconstrained (c = ∞), there is no
limitation on attenuation other than, of course, the classical Bode Integral Formula.

Another information-theoretic analysis yielded a new generalization of the Bode Integral
Formula to a case where it can be “broken” by giving the controller limited access to d by
means of an early warning system [?]. In this context, d is now assumed to be a filtered
white noise process w passing through a shaping filter G, and it is assumed that it takes
m > 0 time units to reach P . The early warning system has access to d without the delay
and uses a channel (wireless, for example) to send d to K. In our general framework, this is
equivalent to K having some observation YK(t) of d(t). The new fundamental performance
limitation we derived described in the following theorem.

Theorem 12 (Value of lookahead information) If {K,P} ∈ Fcs, {mPK ,mKP} ∈ M,
and if K has access to an early-warning system with capacity c (that is, I(YK(t); d(t)) ≤ c),
then

1

2π

∫ π

−π
log |S(ejω)|dω ≥

∑
max{0, log(|λi|)} − c (6)

In the case of an additive white Gaussian d and m > 1, the bound is tight.
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A direct interpretation of this limitation is that disturbance rejection improved linearly
with information rate.

3.3 Stability and Performance in Congestion Games with Learning

As transportation demand is fast approaching its infrastructure capacity, social planning
for efficient usage of transportation networks (TNs) is attracting renewed research interest.
Recent technological advancements are making available intelligent traveler information sys-
tems which have the capability to provide real-time, location specific traffic information and
recommendations to the drivers and thereby enabling them to re-plan their routes during
their trip. Transportation networks provide a prototypical example of distributed decision
networks. Moreover, their analysis and control is made particularly challenging by the fact
that they involve huge numbers of self-interested, bounded-rational agents whose behavior
may be controlled only indirectly through incentives. In fact, transportation networks have
been investigated in the economics literature, most notably in the context of (learning and
evolution in) congestion games. However, these approaches tend to neglect most of the
physical aspects of traffic dynamics, and are therefore unable to explain, e.g., transient be-
haviors occurring in response to sudden, and possibly disruptive, changes in the network
characteristics.

In the works [?, ?], we proposed a novel framework for the analysis of stability and
robustness properties of traffic networks. In our model, we abstract the topology of the
transportation network by a directed acyclic graph G = (V , E), in which each directed edge
e = (v, v′) represents a road, and each node v ∈ V represents a junction. We assume that
there is a single origin-destination pair, vo, vd ∈ E , with a constant unitary incoming flow in
vo, and that the size of the drivers population is so large to be efficiently approximated by
a continuum of agents. Then, we consider a system whose state consists in: a probability
vector π(t) = {πp(t) : p ∈ P} over the set P of simple paths from origin to destination,
which takes into account the fraction of agents preferring a path with respect to the others;
and a vector ρ(t) = {ρe(t) : e ∈ E} whose components correspond to the car density on the
different roads. The car density vector ρ(t) evolves as the drivers, modeled as boundedly
rational agents, navigate their way through the network by combining their preference toward
the different paths with the observation of the current local congestion levels in the network.
On the other hand, the vector π(t) evolves as the agents adapt their preferences toward the
different paths using global information on the current congestion levels on the network. We
assume that such global information is available at a time scale much slower than the typical
time scale at which the actual drivers’ dynamics occur. In this way, the dynamics of π(t) and
ρ(t) becomes intertwined through two feedback loops, each involving a significantly different
kind of information: local information at a fast scale, and global information at a slow scale.
The system dynamics is then described by a system of ordinary differential equations

d

dt
ρe = f−v Ge(ρ

v, π)− fe , e ∈ E ,

d

dt
πp = η (Fp(ρ)− πp) , p ∈ P ,

11



where fe = fe(ρe) is the flow on link e, modeled as an increasing function of the traffic
density with a maximum flow capacity Ce; λv := 1 if v = vo, λ

−
v =

∑
e∈E−v fe if v 6= vo, is

the incoming flow in node v; ρv = {ρe : e ∈ E+v } is the vector of traffic densities on the
out-going edges of node v; Ge(ρ

v, π) is the fraction of drivers taking edge e when crossing
node v, when the local density is ρv, and the path preferences profile is π; η > 0 is the ratio
(typically small) between the characteristic times of the fast and slow dynamics; F (ρ) =

minπ̃

{∑
p

∑
e∈p π̃pte(ρe) + β H(π̃)

}
is the noisy best response to the current traffic density

on the network, with β > 0, H(π̃) a convex function, and te(ρe) the average delay on edge e.
A practical scenario to help envision this setup is where every driver is equipped with a

smart navigation unit that recommends a direction to the driver based on its computations on
global traffic information. Drivers augment this recommendation with the local information
to navigate her way through the network. The resources to collect global information and
compute optimal paths scale with the size of the network, and hence it is reasonable to
expect that the navigation units will update their recommendations relatively infrequently
as compared to typical transit times for large networks, and that the drivers are aware of this
latency. Therefore the traffic dynamics are significantly influenced by the drivers response
to local information.

In [?], we analyze the stability properties of this dynamical system. Under very mild
assumptions on the drivers behavior, we show that system convergences to a neighborhood
of the Wardrop equilibrium. The latter is a well known notion of equilibrium configuration
characterized by equal expected delay on every path from source to destination which is
effectively chosen by some agent, whereby no agent has any incentive to switch. Formally,
ρ∗ := {ρ∗e : e ∈ E} is a Wardrop equilibrium if

∑
e∈E−v f

∗
e =

∑
e∈E+v f

∗
e for all v /∈ {vo, vd}, and

ρ∗e > 0 , ∀e ∈ p =⇒
∑
e∈p

te(ρ
∗
e) ≤

∑
e∈q

te(ρ
∗
e) , ∀q ∈ P .

Wardrop equilibria have been the object of big research effort, especially in relationship
to their inefficiency in terms of social optimum, and the possibility to stir the Wardrop
equilibrium towards a a more socially efficient configuration through the use of tolls. In [?],
it was shown that the asymptotic distance from the Wardrop equilibrium is controlled by
both the time-scale ratio η and the noise level β:

Theorem 13 (Impact of information and control on convergence) Let ρ∗ be the unique
Wardrop equilibrium of the network and f ∗ = {µe(ρ∗e) : e ∈ E} the corresponding flow vector.
Then,

lim sup
t→+∞

||f(t)− f ∗|| ≤ K(η + β) ,

for some positive constant K.

In [?], we study robustness properties of the system to sudden disruptions. Such disrup-
tions are modeled as drastic changes in the physical properties of some of the links, which
decrease (and possibly annihilate) their flow capacity. We then look at the evolution of the
system assuming that it is started at the Wardrop equilibrium of the unperturbed system,
and that the agents’ global preference toward the different paths does not change significantly

12



(this is because π(t) evolves at a time scale too slow for being significant in the presence of
sudden disruptions). We characterize the margin of stability γ of the original equilibrium,
i.e. the minimum total loss in flow capacity that makes the system unstable, as the minimum
node cut of the network.

Theorem 14 (Robustness to graph perturbations) γ = minv 6=vo
∑

e∈E+v Ce − f
∗
e .

This quantification of the margin of stability has to be contrasted to the min-cut capacity
of the network. Indeed the former is equilibrium-dependent, always not larger than the
latter, which is equilibrium independent, and in fact typically much smaller than it. Such
a gap between the two is in fact a consequence of the locality of information available to
the agents. The margin of stability provides a second order optimization parameter for the
optimal choice of tolls.
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